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Algebraic Groups

Let G be a connected reductive algebraic group over an algebraically closed
field K of characteristic p > 0, e.g. G = GL,, n x n invertible matrices.
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Algebraic Groups

Let G be a connected reductive algebraic group over an algebraically closed
field K of characteristic p > 0, e.g. G = GL,, n x n invertible matrices.

Let T be a maximal torus of G, e.g. T = invertible diagonal matrices.

Let B be a Borel subgroup of G containing T, e.g. B = invertible upper
triangular matrices.

We write g = Lie(G), b = Lie(B), h = Lie(T) (e.g. g = Mp(K), b =
upper triangular matrices, j = diagonal matrices).
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Algebraic Groups

Let G be a connected reductive algebraic group over an algebraically closed
field K of characteristic p > 0, e.g. G = GL,, n x n invertible matrices.

Let T be a maximal torus of G, e.g. T = invertible diagonal matrices.

Let B be a Borel subgroup of G containing T, e.g. B = invertible upper
triangular matrices.

We write g = Lie(G), b = Lie(B), h = Lie(T) (e.g. g = Mp(K), b =
upper triangular matrices, j = diagonal matrices).

Let ® be the root system of G, ®* the positive roots, 1 the simple roots.
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Differentiation of Modules

Let M be a finite-dimensional module over the algebraic group G.
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Let M be a finite-dimensional module over the algebraic group G.

Differentiating gives a module M over the Lie algebra g.
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Differentiation of Modules

Let M be a finite-dimensional module over the algebraic group G.
Differentiating gives a module M over the Lie algebra g.

Recall that elements of g are derivations § : K[G] — K[G].
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Differentiation of Modules

Let M be a finite-dimensional module over the algebraic group G.
Differentiating gives a module M over the Lie algebra g.
Recall that elements of g are derivations § : K[G] — K[G].

In general, if §, u are derivations, d o ;4 need not be. But Jodo---04 is!
N

p
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Differentiation of Modules

Let M be a finite-dimensional module over the algebraic group G.
Differentiating gives a module M over the Lie algebra g.
Recall that elements of g are derivations § : K[G] — K[G].

In general, if §, u are derivations, d o ;4 need not be. But Jodo---04 is!
N

P
This gives a map g — g, 0 — 4Pl satisfying certain properties.
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Reduced Enveloping Algebras
Let U(g) be the universal enveloping algebra of g, so

T(g)

Vo) = ey =y ex—byllxy e
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Reduced Enveloping Algebras
Let U(g) be the universal enveloping algebra of g, so

_ T(g)
<X®y—y®X— [X’y] |X,y€g>‘

U(g)

We look at the restricted enveloping algebra

_ U(g)
UO(Q) - <(5p —5[p]|(5€ g>

where dP is the p-th power in U(g).
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Reduced Enveloping Algebras
Let U(g) be the universal enveloping algebra of g, so

B T(g)
U(g) = x@y—y®@x—[x,y]lx,yeg)

We look at the restricted enveloping algebra

_ U(g)
UO(Q) - <5p _5[p]|5€ Q>

where dP is the p-th power in U(g).
Each g-module obtained from a G-module is a Up(g)-module. But not all
g-modules are obtained in this way.
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Reduced Enveloping Algebras
Let U(g) be the universal enveloping algebra of g, so

B T(g)
U(g) = x@y—y®@x—[x,y]lx,yeg)

We look at the restricted enveloping algebra

U(g)

UO(Q) = <6p _6[p]|6eg>

where dP is the p-th power in U(g).

Each g-module obtained from a G-module is a Up(g)-module. But not all
g-modules are obtained in this way.

Given x € g*, we define the reduced enveloping algebra

U(g)
(0P — 6Pl — x(6)P |6 € g)

Uy(g) =
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Properties

Proposition

@ The map & : g — U(g) which sends § — 6P — 1P} is semilinear and
has central image.
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Properties

Proposition
@ The map & : g — U(g) which sends § — 6P — 1P} is semilinear and
has central image.
@ Every irreducible g-module is finite-dimensional.
© Every irreducible g-module is an irreducible U, (g)-module for some

X € g*.
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Properties

Proposition

@ The map & : g — U(g) which sends § — 6P — 1P} is semilinear and
has central image.

@ Every irreducible g-module is finite-dimensional.

© Every irreducible g-module is an irreducible U, (g)-module for some
X € g*.

Q Given g € G and x € g*, the algebras U, (g) and Ug.,(g) are
isomorphic.
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Properties

Proposition
@ The map & : g — U(g) which sends § — 6P — 1P} is semilinear and
has central image.
@ Every irreducible g-module is finite-dimensional.
© Every irreducible g-module is an irreducible U, (g)-module for some
X € g*.
Q Given g € G and x € g*, the algebras U, (g) and Ug.,(g) are

isomorphic.
dimg

© Each algebra U, (g) is finite-dimensional, of dimension p
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Triangular Decomposition

For oo € ®, we write e, for a chosen root vector in g,. Write n™ for the
Lie subalgebra generated by e_,, for a € ®*, and n™ for the Lie subalgebra
generated by e, for a € ®F.
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Triangular Decomposition

For oo € ®, we write e, for a chosen root vector in g,. Write n™ for the
Lie subalgebra generated by e_,, for a € ®*, and n™ for the Lie subalgebra
generated by e, for a € ®F.

We then have g=n"@®hdn".

Note that ec[yp] = 0 for all o € ®, while h has a basis hy, ..., hy with
hPY = by forall 1 <i<d.
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Triangular Decomposition

For oo € ®, we write e, for a chosen root vector in g,. Write n™ for the
Lie subalgebra generated by e_,, for a € ®*, and n™ for the Lie subalgebra
generated by e, for a € ®F.

We then have g=n"@®hdn".

Note that ec[yp] = 0 for all o € ®, while h has a basis hy, ..., hy with
hPY = by forall 1 <i<d.

We will only consider y € g* with x(n™) = 0.
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Baby Verma Modules

Let A € Ay, where

Ay = {Ne b | A(h)P — A(hlP1) = x(h)P for all h e b}.

We define K to be the 1-dimensional U, (b)-module on which n™ acts
trivially and b acts via .
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Baby Verma Modules

Let A € Ay, where

Ay = {Ne b | A(h)P — A(hlP1) = x(h)P for all h e b}.

We define K to be the 1-dimensional U, (b)-module on which n™ acts
trivially and b acts via .

We then define the baby Verma module

Zy(A) = Uy(9) ®u, v) Kn-

Proposition

Every irreducible U, (g)-module is a quotient of some baby Verma modu/e.J
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SLy

when p > 2.

When G = SL;, and so g = sl,, we classify the irreducible g-modules

=] & = E DA
Matt Westaway (Birmingham) Highest weight categories



SLy

When G = SL;, and so g = sl,, we classify the irreducible g-modules
when p > 2.
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SLy

When G = SL;, and so g = sl,, we classify the irreducible g-modules
when p > 2.

Recall that sl> has K-basis e, h, f where

=5 =6 %) ()

Each x € g* is conjugate to a linear form of one of the three following
types:

Q x=0
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Recall that sl> has K-basis e, h, f where
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Each x € g* is conjugate to a linear form of one of the three following
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SLy

When G = SL;, and so g = sl,, we classify the irreducible g-modules
when p > 2.

Recall that sl has K-basis e, h, f where

=5 =6 %) ()

Each x € g* is conjugate to a linear form of one of the three following
types:

Q x=0

Q@ e—0,f—0,h— t for some t € K* We call such x semisimple
Q@ e—0,f— 1 h— 0. We call such x nilpotent.

We may identify h* with K. When x = 0 or x is nilpotent, we have
Ay = Fp. When x is semisimple we have A, < K\F,.
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SLy

Theorem (Block '62, Rudakov-Shafarevich '67)

© Suppose x = 0. Then there exists exactly one irreducible
Uy (g)-module of each dimension 1,...,p, and each irreducible U, (g)
appears in this way.
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SLy

Theorem (Block '62, Rudakov-Shafarevich '67)

© Suppose x = 0. Then there exists exactly one irreducible
Uy (g)-module of each dimension 1,...,p, and each irreducible U, (g)
appears in this way.

@ Suppose x is non-zero semisimple. Then each baby Verma module
Zy(N), for X € Ny, is irreducible. Each irreducible module appears in
this way. Furthermore, Z,(\) = Z,(p) if and only if \ = ji. So there
are exactly p non-isomorphic irreducible U, (g)-modules.
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SLy

Theorem (Block '62, Rudakov-Shafarevich '67)

© Suppose x = 0. Then there exists exactly one irreducible
Uy (g)-module of each dimension 1,...,p, and each irreducible U, (g)
appears in this way.

@ Suppose x is non-zero semisimple. Then each baby Verma module
Zy(N), for X € Ny, is irreducible. Each irreducible module appears in
this way. Furthermore, Z,(\) = Z,(p) if and only if \ = ji. So there
are exactly p non-isomorphic irreducible U, (g)-modules.

© Suppose x is non-zero nilpotent. Then each baby Verma module
Zy(N), for X € Ny, is irreducible. Each irreducible module appears in
this way. Furthermore, Z,(\) = Z,(p) if and only if \ = pu or
A =p—u—2. So there are exactly pTH non-isomorphic irreducible
U, (g)-modules.
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Coordinate Algebra

Recall that K[G] is the coordinate algebra of G. This is a Hopf algebra,
with comultiplication, counit and antipode:

A :K[G] > K[G]®K[G] = K[G x G], ¢+ ((g1,8) — d(g1g2)),
e: K[G] = K, ¢ — ¢(1lg),
S:K[G] = K[G], ¢~ (g— (g ).
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Coordinate Algebra

Recall that K[G] is the coordinate algebra of G. This is a Hopf algebra,
with comultiplication, counit and antipode:

A :K[G] > K[G]®K[G] = K[G x G], ¢+ ((g1,8) — d(g1g2)),
e: K[G] = K, ¢ — ¢(1lg),
S:K[G] = K[G], ¢~ (g— (g ).
We let | be the augmentation ideal of K[G], i.e.

I = ker(e).
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Distribution Algebra

The distribution algebra Dist(G) of G is a filtered Hopf algebra

Dist(G) = ] Dista(G)

n=0

where Dist,(G) is a K-vector space (in fact coalgebra) defined as

Dist,(G) := {§ : K[G] — K| Jis linear and §(/"*1) = 0}.
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Distribution Algebra

The distribution algebra Dist(G) of G is a filtered Hopf algebra

Dist(G) = ] Dista(G)

n=0

where Dist,(G) is a K-vector space (in fact coalgebra) defined as

Dist,(G) := {§ : K[G] — K| Jis linear and §(/"*1) = 0}.

Given 0, u € Dist(G), we have the product du defined as the composition

K[G] & K[G]®K[G] B4 K@K = K.
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Distribution Algebra

The distribution algebra Dist(G) of G is a filtered Hopf algebra

Dist(G) = ] Dista(G)

n=0

where Dist,(G) is a K-vector space (in fact coalgebra) defined as

Dist,(G) := {§ : K[G] — K| Jis linear and §(/"*1) = 0}.

Given 0, u € Dist(G), we have the product du defined as the composition

K[G] & K[G]®K[G] B4 K@K = K.

The unit of Dist(G) is the counit £ of K[G].
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Distribution Algebra
We furthermore define

Dist (G) = {6 € Dist,(G) | (1k[g]) = 0}
and

Dist*(G) = | ] Dist; (G).

n=0
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Distribution Algebra

We furthermore define

Dist (G) = {6 € Dist,(G) | (1k[g]) = 0}

and
Dist*(G) = | ] Dist; (G).

n=0

Proposition
Let 6 € Distp(G), p € Disty,(G). Then
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Distribution Algebra

We furthermore define

Dist (G) = {6 € Dist,(G) | (1k[g]) = 0}

and
Dist*(G) = | ] Dist; (G).
n=0
Proposition

Let 6 € Distp(G), p € Disty,(G). Then
@ The product ép lies in Distpim(G).
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Distribution Algebra

We furthermore define

Dist; (G) = {5 € Dista(G) | §(1k(e)) = 0}

and
Dist*(G) = | ] Dist; (G).
n=0
Proposition
Let 6 € Distp(G), p € Disty,(G). Then
@ The product ép lies in Distpim(G).
@ The commutator |9, ;] = dpu — pd lies in Distpym—1(G).
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Distribution Algebra

We furthermore define
Dist " (G) := {6 € Dist,(G) | 6(1K[G]) = 0}

and
Dist*(G) = | ] Dist; (G).

n=0

Proposition
Let 6 € Distp(G), p € Disty,(G). Then
@ The product ép lies in Distpim(G).
@ The commutator |9, ;] = dpu — pd lies in Distpym—1(G).
© If, furthermore, § € Dist,"(G) and p € Dist(G) then
Su e Distt, (G) and [6, ] € Dist;Jrn_l(G).

n+m
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Distribution Algebra

We furthermore define
Dist " (G) := {6 € Dist,(G) | 6(1K[G]) = 0}

and
Dist*(G) = | ] Dist; (G).

n=0

Proposition
Let 6 € Distp(G), p € Disty,(G). Then
@ The product ép lies in Distpim(G).
@ The commutator |9, ;] = dpu — pd lies in Distpym—1(G).

© If, furthermore, § € Dist,"(G) and p € Dist(G) then
ép € Dist,, (G) and [0, ] € Dist}, ,_1(G).
In particular, Dist{ (G) = g.
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Frobenius kernels
The Frobenius morphism

F:G—GWY
is obtained from the comorphism

F* K[G]™Y - K[G], > fP.
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Frobenius kernels
The Frobenius morphism

F:6—GW

is obtained from the comorphism

F* K[G]™Y - K[G], > fP.

The first Frobenius kernel G; of G is then defined as the kernel of this

map.
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Frobenius kernels
The Frobenius morphism

F:6—GW
is obtained from the comorphism
F*:K[G]"Y - K[G], fw— fP.

The first Frobenius kernel G; of G is then defined as the kernel of this
map.

We may define Dist(Gy) in the same way we defined Dist(G).
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Frobenius kernels
The Frobenius morphism

F:6—GW
is obtained from the comorphism
F*:K[G]"Y - K[G], fw— fP.

The first Frobenius kernel G; of G is then defined as the kernel of this
map.

We may define Dist(Gj) in the same way we defined Dist(G).

There exists a Lie algebra homomorphism g — Dist(G)(~), which extends
to an algebra homomorphism

U(g) — Dist(G).
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Frobenius kernels
The Frobenius morphism

F:G6—GW
is obtained from the comorphism
F*:K[G]"Y - K[G], fw— fP.

The first Frobenius kernel G; of G is then defined as the kernel of this
map.

We may define Dist(Gj) in the same way we defined Dist(G).

There exists a Lie algebra homomorphism g — Dist(G)(~), which extends
to an algebra homomorphism

U(g) — Dist(G).

When the characteristic of K is zero, this is an isomorphism.
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Frobenius kernels
The Frobenius morphism

F:G6—GW
is obtained from the comorphism
F*:K[G]"Y - K[G], fw— fP.

The first Frobenius kernel G; of G is then defined as the kernel of this
map.

We may define Dist(Gj) in the same way we defined Dist(G).

There exists a Lie algebra homomorphism g — Dist(G)(~), which extends
to an algebra homomorphism

U(g) — Dist(G).

When the characteristic of K is zero, this is an isomorphism.
But, when the characteristic of K is p > 0, it is generally neither injective
or surjective.
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Friedlander-Parshall Question

Theorem

In characteristic p > 0, the algebra homomorphism passes to an algebra
isomorphism

Uo(g) = Dist(Gl).
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Friedlander-Parshall Question

Theorem

In characteristic p > 0, the algebra homomorphism passes to an algebra
isomorphism

Uo(g) = Dist(Gl).

By iterating the Frobenius map, we may instead take the kernel of

Fr:G— G,
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Friedlander-Parshall Question

Theorem

In characteristic p > 0, the algebra homomorphism passes to an algebra

isomorphism

Uo(g) = Dist(Gl).

By iterating the Frobenius map, we may instead take the kernel of
F:G— G,

We call it a higher Frobenius kernel of G and denote it by G,.
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Friedlander-Parshall Question

Theorem

In characteristic p > 0, the algebra homomorphism passes to an algebra
isomorphism
Uo(g) = Dist(Gy).

By iterating the Frobenius map, we may instead take the kernel of
Fr:G6— G,

We call it a higher Frobenius kernel of G and denote it by G,.

Question (Friedlander-Parshall, 1990)

Do the reduced enveloping algebras U, (g) have natural analogues
corresponding to the infinitesimal group schemes G, associated to G for
r>17
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Higher Universal Enveloping Algebras

We define the higher universal enveloping algebra of degree r € N as

T(DiSt;rH_l(G))
Q

where Q is the two-sided ideal generated by the relations:

ul(G) =
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Higher Universal Enveloping Algebras

We define the higher universal enveloping algebra of degree r € N as
T(Dist,.1_,(G))
Q

where Q is the two-sided ideal generated by the relations:
® §®pu— o for § € Dist; (G), p € Dist (G) with i + j < p"*!, and

ul(G) =
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Higher Universal Enveloping Algebras

We define the higher universal enveloping algebra of degree r € N as

T(Dist} .1 4(6))
Q
where Q is the two-sided ideal generated by the relations:
® §®pu— o for § € Dist; (G), p € Dist (G) with i + j < p"*!, and
® @ pu—p®3— 4, for § € Dist; (G), u € Dist; (G) with
i+j<ptl

ul(G) =
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Higher Universal Enveloping Algebras

We define the higher universal enveloping algebra of degree r € N as

T(DiSt;rH,l(G))
Q
where Q is the two-sided ideal generated by the relations:
® §® u— b for § € Dist! (G), pe Distjr(G) with i +j < p™1, and

® @ pu—p®0J—[4,u] for § € Dist; (G), u € Dist; (G) with
i+j<ptl

ulrl(6) =

Here, o and [6, 1] are the product and commutator in Dist(G), which lie
in Dist ', ,;_,(G) because of the assumptions
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Structural Results

Theorem (W. '18,'19)

@ For each r e N, UI'(G) is a cocommutative Hopf algebra.
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Structural Results

Theorem (W. '18,'19)

o For each r e N, UI')(G) is a cocommutative Hopf algebra.

@ fFor each r = s, there exists a Hopf algebra homomorphism
ulrl(G) - UB(G).
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Structural Results

Theorem (W. '18,'19)

o For each r e N, UI')(G) is a cocommutative Hopf algebra.

@ fFor each r = s, there exists a Hopf algebra homomorphism
ulrl(G) - UB(G).
o When r = 0 we get Ul(G) = U(g).
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Structural Results

Theorem (W. '18,'19)

o For each r e N, UI')(G) is a cocommutative Hopf algebra.

@ fFor each r = s, there exists a Hopf algebra homomorphism
ulrl(G) - UB(G).

o When r = 0 we get Ul(G) = U(g).

o Each of the algebra UL")(G) has a Poincaré-Birkhoff-Witt basis, using
regular and divided powers.
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Structural Results

Theorem (W. '18,'19)

For each r € N, UU'N(G) is a cocommutative Hopf algebra.
For each r > s, there exists a Hopf algebra homomorphism
ulrl(G) - UB(G).

When r = 0 we get UI%(G) = U(g).

Each of the algebra UU(G) has a Poincaré-Birkhoff-Witt basis, using
regular and divided powers.

For each ¢ € DiSt;r(G), the element §®P — 6P is central, and the map
§ > 6®P — 6P is semilinear.
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Structural Results

Theorem (W. '18,'19)

For each r € N, UU'N(G) is a cocommutative Hopf algebra.

For each r = s, there exists a Hopf algebra homomorphism
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Structural Results

Theorem (W. '18,'19)

For each r € N, UU'N(G) is a cocommutative Hopf algebra.

For each r = s, there exists a Hopf algebra homomorphism

ull(G) — UFl(G).

When r = 0 we get UI%(G) = U(g).

Each of the algebra UU(G) has a Poincaré-Birkhoff-Witt basis, using
regular and divided powers.

For each ¢ € Dist . (G), the element §®P — 5P is central, and the map
§ — 6®P — 5P is semilinear.

All irreducible U")(G)-modules are finite-dimensional.

The finite-dimensional Hopf algebra Dist(G,) embeds inside Ul'l(G)
as a normal Hopf subalgebra.
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Higher Reduced Enveloping Algebras
The algebra homomorphisms
ut(6) — U(g)

restrict to
Dist, (G) — g.
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Higher Reduced Enveloping Algebras
The algebra homomorphisms

utl(6) — U(g)
restrict to

Dist % (G) — g.

Thus, any linear form x € g* can be lifted to a linear map

x : Dist.(G) — K.
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Higher Reduced Enveloping Algebras
The algebra homomorphisms
utl(6) — U(g)
restrict to
Dist % (G) — g.
Thus, any linear form x € g* can be lifted to a linear map

x : Dist.(G) — K.

This allows us to define the higher reduced enveloping algebra
associated to y € g* as

ulr(G
ull(G) = () — .
(0%P — 6P — x(0)P |0 € Dist . (G))
Matt Westaway (Birmingham) Highest weight categories 24th March 2021

17 /21



Higher Reduced Enveloping Algebras

These algebras have a number of nice properties:
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Higher Reduced Enveloping Algebras

These algebras have a number of nice properties:

e If g has dimension n then, for any y € g*, the K-algebra U>[<r](G) has

dimension p(r+1)n,
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Higher Reduced Enveloping Algebras

These algebras have a number of nice properties:

e If g has dimension n then, for any y € g*, the K-algebra U>[<r](G) has
dimension p(r+1)n,

@ When x = 0, we obtain U(Er](G) = Dist(Gr41).
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Higher Reduced Enveloping Algebras

These algebras have a number of nice properties:

e If g has dimension n then, for any y € g*, the K-algebra U>[<r](G) has
dimension p(r+1)n,

@ When x = 0, we obtain U(Er](G) = Dist(Gr41).
e Dist(G,) lies inside U@(G) for all x € g*.
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Higher Reduced Enveloping Algebras

These algebras have a number of nice properties:
e If g has dimension n then, for any y € g*, the K-algebra U>[<r](G) has
dimension p(r+1)n,
@ When x = 0, we obtain U(Er](G) = Dist(Gy+1).
e Dist(G,) lies inside U@(G) for all x € g*.
o Every irreducible U"1(G)-module is a U>[<r](G)—modu|es for some
X €g*.
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Higher Reduced Enveloping Algebras

These algebras have a number of nice properties:

e If g has dimension n then, for any y € g*, the K-algebra U>[<r](G) has
dimension p(r+1)n,

@ When x = 0, we obtain U(Er](G) = Dist(Gr41).
e Dist(G,) lies inside U@(G) for all x € g*.

o Every irreducible U"1(G)-module is a U@(G)—modules for some

X €g.
e Given g€ G, U>[<r](G) ~ Ug;((G), where g - x is the twisted coadjoint
action.
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Representation Theoretic Results

When G is a semisimple simply-connected algebraic group, we can obtain
a Steinberg decomposition.
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Representation Theoretic Results

When G is a semisimple simply-connected algebraic group, we can obtain
a Steinberg decomposition.

Theorem (W. '19)

There is a bijection

v - Ir(UM(G)) - Trr(Dist(G,)) x Irr(U(g))

which sends M to (P,Homg, (P, M)), where P is the unique irreducible
Dist (G, )-submodule of M. Furthermore, the reverse map sends (P, N) to

the UI'(G)-module (U(G) @ (c,) P) ®u(g) N = P ®x N
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Representation Theoretic Results

When G is a semisimple simply-connected algebraic group, we can obtain
a Steinberg decomposition.

Theorem (W. '19)
There is a bijection
v - Ir(UM(G)) - Trr(Dist(G,)) x Irr(U(g))

which sends M to (P,Homg, (P, M)), where P is the unique irreducible
Dist (G, )-submodule of M. Furthermore, the reverse map sends (P, N) to
the U[r](G) module ( [](G) ®Dlst(Gr) P) ®U(g) N=PxN

Theorem (W. '19)

Let x € g*. The above map restricts to a bijection

v, Irr(UQ](G)) — Irr(Dist(Gy)) x Irr(Uy (g)).

v
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Consequences
Given P € Irr(Dist(G,)), x € g* with x(n*) =0, and

ey, = {Aeh* [ A(h)P — A(hPlYy = x(h)Pfor all he b}

we define the teenage Verma module

ZU(P,X) = (UY(6) ®pist(6,) P) Buy (o) Zx(N) = P ®x Zy(N).
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Under certain assumptions, we obtain the following properties.
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e Every irreducible U,[Cr](G)—moduIe is a homomorphic image of a
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we define the teenage Verma module

Z(P.) = (UY(G) ®pist(c,) P) ®uy(p) Ze(A) = P®x Z(A).

Under certain assumptions, we obtain the following properties.

e Every irreducible U@(G)—module is a homomorphic image of a
teenage Verma module.

o If x is regular (i.e. dim(Cg(x)) = dim(h)), then each Z>[<r](P, A) is an
irreducible Ul1(G)-module.
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Consequences
Given P € Irr(Dist(G,)), x € g* with x(n*) =0, and

ey, = {Aeh* [ A(h)P — A(hPlYy = x(h)Pfor all he b}
we define the teenage Verma module
ZI(P,X) = (UYN(G) ®Dist(6,) P) Ouy(e) Zx(N) = POk Z ().

Under certain assumptions, we obtain the following properties.

e Every irreducible U@(G)—module is a homomorphic image of a
teenage Verma module.

o If x is regular (i.e. dim(Cg(x)) = dim(h)), then each Z>[<r](P, A) is an
irreducible Ul1(G)-module.

e Each teenage Verma module Z>[<r](P, A) has dimension
p4m®7) dim(P), so the maximal dimension of an irreducible
Ul(G)-module is pr+Ddm(7) "obtained via the Steinberg module.

Matt Westaway (Birmingham) Highest weight categories 24th March 2021 20/21



Thank you for listening!
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