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Algebraic Groups

Let G be a connected reductive algebraic group over an algebraically closed
field K of characteristic p ą 0, e.g. G “ GLn, n ˆ n invertible matrices.

Let T be a maximal torus of G , e.g. T “ invertible diagonal matrices.

Let B be a Borel subgroup of G containing T , e.g. B “ invertible upper
triangular matrices.

We write g “ LiepG q, b “ LiepBq, h “ LiepT q (e.g. g “ MnpKq, b “
upper triangular matrices, h “ diagonal matrices).

Let Φ be the root system of G , Φ` the positive roots, Π the simple roots.
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Differentiation of Modules

Let M be a finite-dimensional module over the algebraic group G .

Differentiating gives a module M over the Lie algebra g.

Recall that elements of g are derivations δ : KrG s Ñ KrG s.

In general, if δ, µ are derivations, δ ˝ µ need not be. But δ ˝ δ ˝ ¨ ¨ ¨ ˝ δ
loooooomoooooon

p

is!

This gives a map gÑ g, δ ÞÑ δrps satisfying certain properties.
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Reduced Enveloping Algebras
Let Upgq be the universal enveloping algebra of g, so

Upgq “
T pgq

xx b y ´ y b x ´ rx , y s | x , y P gy
.

We look at the restricted enveloping algebra

U0pgq “
Upgq

xδp ´ δrps | δ P gy

where δp is the p-th power in Upgq.
Each g-module obtained from a G -module is a U0pgq-module. But not all
g-modules are obtained in this way.
Given χ P g˚, we define the reduced enveloping algebra

Uχpgq “
Upgq

xδp ´ δrps ´ χpδqp | δ P gy
.
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Properties

Proposition

1 The map ξ : gÑ Upgq which sends δ ÞÑ δp ´ δrps is semilinear and
has central image.

2 Every irreducible g-module is finite-dimensional.

3 Every irreducible g-module is an irreducible Uχpgq-module for some
χ P g˚.

4 Given g P G and χ P g˚, the algebras Uχpgq and Ug ¨χpgq are
isomorphic.

5 Each algebra Uχpgq is finite-dimensional, of dimension pdim g.
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Triangular Decomposition

For α P Φ, we write eα for a chosen root vector in gα. Write n´ for the
Lie subalgebra generated by e´α for α P Φ`, and n` for the Lie subalgebra
generated by eα for α P Φ`.

We then have g “ n´ ‘ h‘ n`.

Note that e
rps
α “ 0 for all α P Φ, while h has a basis h1, . . . , hd with

h
rps
i “ hi for all 1 ď i ď d .

We will only consider χ P g˚ with χpn`q “ 0.
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Baby Verma Modules

Let λ P Λχ, where

Λχ “ tλ P h
˚ |λphqp ´ λphrpsq “ χphqp for all h P hu.

We define Kλ to be the 1-dimensional Uχpbq-module on which n` acts
trivially and h acts via λ.

We then define the baby Verma module

Zχpλq :“ Uχpgq bUχpbq Kλ.

Proposition

Every irreducible Uχpgq-module is a quotient of some baby Verma module.
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SL2

When G “ SL2, and so g “ sl2, we classify the irreducible g-modules
when p ą 2.

Recall that sl2 has K-basis e, h, f where

e “

ˆ

0 1
0 0

˙

, h “

ˆ

1 0
0 ´1

˙

, f “

ˆ

0 0
1 0

˙

.

Each χ P g˚ is conjugate to a linear form of one of the three following
types:

1 χ “ 0.

2 e ÞÑ 0, f ÞÑ 0, h ÞÑ t for some t P K˚. We call such χ semisimple.

3 e ÞÑ 0, f ÞÑ 1, h ÞÑ 0. We call such χ nilpotent.

We may identify h˚ with K. When χ “ 0 or χ is nilpotent, we have
Λχ “ Fp. When χ is semisimple we have Λχ Ď KzFp.
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SL2

Theorem (Block ’62, Rudakov-Shafarevich ’67)

1 Suppose χ “ 0. Then there exists exactly one irreducible
Uχpgq-module of each dimension 1, . . . , p, and each irreducible Uχpgq
appears in this way.

2 Suppose χ is non-zero semisimple. Then each baby Verma module
Zχpλq, for λ P Λχ, is irreducible. Each irreducible module appears in
this way. Furthermore, Zχpλq – Zχpµq if and only if λ “ µ. So there
are exactly p non-isomorphic irreducible Uχpgq-modules.

3 Suppose χ is non-zero nilpotent. Then each baby Verma module
Zχpλq, for λ P Λχ, is irreducible. Each irreducible module appears in
this way. Furthermore, Zχpλq – Zχpµq if and only if λ “ µ or
λ “ p ´ µ´ 2. So there are exactly p`1

2 non-isomorphic irreducible
Uχpgq-modules.
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Coordinate Algebra

Recall that KrG s is the coordinate algebra of G . This is a Hopf algebra,
with comultiplication, counit and antipode:

∆ : KrG s Ñ KrG s bKrG s “ KrG ˆ G s, φ ÞÑ ppg1, g2q ÞÑ φpg1g2qq,

ε : KrG s Ñ K, φ ÞÑ φp1G q,

S : KrG s Ñ KrG s, φ ÞÑ pg ÞÑ φpg´1qq.

We let I be the augmentation ideal of KrG s, i.e.

I “ kerpεq.
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Distribution Algebra

The distribution algebra DistpG q of G is a filtered Hopf algebra

DistpG q “
ď

ně0

DistnpG q

where DistnpG q is a K-vector space (in fact coalgebra) defined as

DistnpG q :“ tδ : KrG s Ñ K | δ is linear and δpI n`1q “ 0u.

Given δ, µ P DistpG q, we have the product δµ defined as the composition

KrG s ∆
ÝÑ KrG s bKrG s δbµ

ÝÝÑ KbK „
ÝÑ K.

The unit of DistpG q is the counit ε of KrG s.

Matt Westaway (Birmingham) Highest weight categories 24th March 2021 11 / 21



Distribution Algebra

The distribution algebra DistpG q of G is a filtered Hopf algebra

DistpG q “
ď

ně0

DistnpG q

where DistnpG q is a K-vector space (in fact coalgebra) defined as

DistnpG q :“ tδ : KrG s Ñ K | δ is linear and δpI n`1q “ 0u.

Given δ, µ P DistpG q, we have the product δµ defined as the composition

KrG s ∆
ÝÑ KrG s bKrG s δbµ

ÝÝÑ KbK „
ÝÑ K.

The unit of DistpG q is the counit ε of KrG s.

Matt Westaway (Birmingham) Highest weight categories 24th March 2021 11 / 21



Distribution Algebra

The distribution algebra DistpG q of G is a filtered Hopf algebra

DistpG q “
ď

ně0

DistnpG q

where DistnpG q is a K-vector space (in fact coalgebra) defined as

DistnpG q :“ tδ : KrG s Ñ K | δ is linear and δpI n`1q “ 0u.

Given δ, µ P DistpG q, we have the product δµ defined as the composition

KrG s ∆
ÝÑ KrG s bKrG s δbµ

ÝÝÑ KbK „
ÝÑ K.

The unit of DistpG q is the counit ε of KrG s.

Matt Westaway (Birmingham) Highest weight categories 24th March 2021 11 / 21



Distribution Algebra

We furthermore define

Dist`n pG q :“ tδ P DistnpG q | δp1KrG sq “ 0u

and
Dist`pG q “

ď

ně0

Dist`n pG q.

Proposition

Let δ P DistnpG q, µ P DistmpG q. Then

1 The product δµ lies in Distn`mpG q.

2 The commutator rδ, µs “ δµ´ µδ lies in Distn`m´1pG q.

3 If, furthermore, δ P Dist`n pG q and µ P Dist`mpG q then
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Frobenius kernels
The Frobenius morphism

F : G Ñ G p1q

is obtained from the comorphism

F ˚ : KrG sp´1q Ñ KrG s, f ÞÑ f p.

The first Frobenius kernel G1 of G is then defined as the kernel of this
map.
We may define DistpG1q in the same way we defined DistpG q.
There exists a Lie algebra homomorphism gÑ DistpG qp´q, which extends
to an algebra homomorphism

Upgq Ñ DistpG q.

When the characteristic of K is zero, this is an isomorphism.
But, when the characteristic of K is p ą 0, it is generally neither injective
or surjective.
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Friedlander-Parshall Question

Theorem

In characteristic p ą 0, the algebra homomorphism passes to an algebra
isomorphism

U0pgq
„
ÝÑ DistpG1q.

By iterating the Frobenius map, we may instead take the kernel of

F r : G Ñ G prq.

We call it a higher Frobenius kernel of G and denote it by Gr .

Question (Friedlander-Parshall, 1990)

Do the reduced enveloping algebras Uχpgq have natural analogues
corresponding to the infinitesimal group schemes Gr associated to G for
r ą 1?
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Higher Universal Enveloping Algebras

We define the higher universal enveloping algebra of degree r P N as

U rrspG q :“
T pDist`

pr`1´1
pG qq

Q

where Q is the two-sided ideal generated by the relations:

δ b µ´ δµ for δ P Dist`i pG q, µ P Dist`j pG q with i ` j ă pr`1, and

δ b µ´ µb δ ´ rδ, µs for δ P Dist`i pG q, µ P Dist`j pG q with

i ` j ď pr`1.

Here, δµ and rδ, µs are the product and commutator in DistpG q, which lie
in Dist`

pr`1´1
pG q because of the assumptions
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Structural Results

Theorem (W. ’18,’19)

For each r P N, U rrspG q is a cocommutative Hopf algebra.

For each r ě s, there exists a Hopf algebra homomorphism
U rrspG q� U rsspG q.

When r “ 0 we get U r0spG q – Upgq.

Each of the algebra U rrspG q has a Poincaré-Birkhoff-Witt basis, using
regular and divided powers.

For each δ P Dist`pr pG q, the element δbp ´ δp is central, and the map
δ ÞÑ δbp ´ δp is semilinear.

All irreducible U rrspG q-modules are finite-dimensional.

The finite-dimensional Hopf algebra DistpGr q embeds inside U rrspG q
as a normal Hopf subalgebra.
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Higher Reduced Enveloping Algebras

The algebra homomorphisms

U rrspG q� Upgq

restrict to
Dist`pr pG q� g.

Thus, any linear form χ P g˚ can be lifted to a linear map

χ : Dist`pr pG q Ñ K.

This allows us to define the higher reduced enveloping algebra
associated to χ P g˚ as

U rrsχ pG q :“
U rrspG q

xδbp ´ δp ´ χpδqp | δ P Dist`pr pG qy
.
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Higher Reduced Enveloping Algebras

These algebras have a number of nice properties:

If g has dimension n then, for any χ P g˚, the K-algebra U
rrs
χ pG q has

dimension ppr`1qn.

When χ “ 0, we obtain U
rrs
0 pG q “ DistpGr`1q.

DistpGr q lies inside U
rrs
χ pG q for all χ P g˚.

Every irreducible U rrspG q-module is a U
rrs
χ pG q-modules for some

χ P g˚.

Given g P G , U
rrs
χ pG q – U

rrs
g ¨χpG q, where g ¨ χ is the twisted coadjoint

action.
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Representation Theoretic Results

When G is a semisimple simply-connected algebraic group, we can obtain
a Steinberg decomposition.

Theorem (W. ’19)

There is a bijection

Ψ : IrrpU rrspG qq Ñ IrrpDistpGr qq ˆ IrrpUpgqq

which sends M to pP,HomGr pP,Mqq, where P is the unique irreducible
DistpGr q-submodule of M. Furthermore, the reverse map sends pP,Nq to
the U rrspG q-module pU rrspG q bDistpGr q Pq bUpgq N “ P bK N.

Theorem (W. ’19)

Let χ P g˚. The above map restricts to a bijection

Ψχ : IrrpU rrsχ pG qq Ñ IrrpDistpGr qq ˆ IrrpUχpgqq.
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Consequences

Given P P IrrpDistpGr qq, χ P g
˚ with χpn`q “ 0, and

λ P Λχ :“ tλ P h˚ |λphqp ´ λphrpsq “ χphqp for all h P hu

we define the teenage Verma module

Z rrsχ pP, λq :“ pU rrsχ pG q bDistpGr q
Pq bUχpgq Zχpλq – P bK Zχpλq.

Under certain assumptions, we obtain the following properties.

Every irreducible U
rrs
χ pG q-module is a homomorphic image of a

teenage Verma module.

If χ is regular (i.e. dimpCG pχqq “ dimphq), then each Z
rrs
χ pP, λq is an

irreducible U rrspG q-module.

Each teenage Verma module Z
rrs
χ pP, λq has dimension

pdimpn´q dimpPq, so the maximal dimension of an irreducible
U rrspG q-module is ppr`1q dimpn´q, obtained via the Steinberg module.
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Thank you for listening!
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