Higher Modular Representations of Lie Algebras

Matt Westaway

Colloque Tournant 2021 du GDR Théorie de Lie Algébrique et Géométrique

24th March 2021

Let G be a connected reductive algebraic group over an algebraically closed field \mathbb{K} of characteristic p > 0, e.g. $G = GL_n$, $n \times n$ invertible matrices.

Let G be a connected reductive algebraic group over an algebraically closed field \mathbb{K} of characteristic p > 0, e.g. $G = GL_n$, $n \times n$ invertible matrices.

Let T be a maximal torus of G, e.g. T = invertible diagonal matrices.

Let G be a connected reductive algebraic group over an algebraically closed field \mathbb{K} of characteristic p > 0, e.g. $G = GL_n$, $n \times n$ invertible matrices.

Let T be a maximal torus of G, e.g. T = invertible diagonal matrices.

Let B be a Borel subgroup of G containing T, e.g. B = invertible upper triangular matrices.

(4) (日本)

Let G be a connected reductive algebraic group over an algebraically closed field \mathbb{K} of characteristic p > 0, e.g. $G = GL_n$, $n \times n$ invertible matrices.

Let T be a maximal torus of G, e.g. T = invertible diagonal matrices.

Let B be a Borel subgroup of G containing T, e.g. B = invertible upper triangular matrices.

We write $\mathfrak{g} = \operatorname{Lie}(G)$, $\mathfrak{b} = \operatorname{Lie}(B)$, $\mathfrak{h} = \operatorname{Lie}(T)$ (e.g. $\mathfrak{g} = M_n(\mathbb{K})$, $\mathfrak{b} =$ upper triangular matrices, $\mathfrak{h} =$ diagonal matrices).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let G be a connected reductive algebraic group over an algebraically closed field \mathbb{K} of characteristic p > 0, e.g. $G = GL_n$, $n \times n$ invertible matrices.

Let T be a maximal torus of G, e.g. T = invertible diagonal matrices.

Let B be a Borel subgroup of G containing T, e.g. B = invertible upper triangular matrices.

We write $\mathfrak{g} = \operatorname{Lie}(G)$, $\mathfrak{b} = \operatorname{Lie}(B)$, $\mathfrak{h} = \operatorname{Lie}(T)$ (e.g. $\mathfrak{g} = M_n(\mathbb{K})$, $\mathfrak{b} =$ upper triangular matrices, $\mathfrak{h} =$ diagonal matrices).

Let Φ be the root system of G, Φ^+ the positive roots, Π the simple roots.

イロト 不得下 イヨト イヨト 二日

Let M be a finite-dimensional module over the algebraic group G.

э

Let M be a finite-dimensional module over the algebraic group G.

Differentiating gives a module M over the Lie algebra \mathfrak{g} .

Let M be a finite-dimensional module over the algebraic group G.

Differentiating gives a module M over the Lie algebra \mathfrak{g} .

Recall that elements of \mathfrak{g} are derivations $\delta : \mathbb{K}[G] \to \mathbb{K}[G]$.

(本)

Let M be a finite-dimensional module over the algebraic group G.

Differentiating gives a module M over the Lie algebra \mathfrak{g} .

Recall that elements of \mathfrak{g} are derivations $\delta : \mathbb{K}[G] \to \mathbb{K}[G]$.

In general, if δ, μ are derivations, $\delta \circ \mu$ need not be. But $\underbrace{\delta \circ \delta \circ \cdots \circ \delta}_{p}$ is!

(日) (四) (日) (日) (日)

Let M be a finite-dimensional module over the algebraic group G.

Differentiating gives a module M over the Lie algebra \mathfrak{g} .

Recall that elements of \mathfrak{g} are derivations $\delta : \mathbb{K}[G] \to \mathbb{K}[G]$.

In general, if δ, μ are derivations, $\delta \circ \mu$ need not be. But $\underbrace{\delta \circ \delta \circ \cdots \circ \delta}_{p}$ is!

This gives a map $\mathfrak{g} \to \mathfrak{g}$, $\delta \mapsto \delta^{[p]}$ satisfying certain properties.

イロト イポト イヨト イヨト 二日

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , so

$$U(\mathfrak{g}) = \frac{T(\mathfrak{g})}{\langle x \otimes y - y \otimes x - [x, y] \, | \, x, y \in \mathfrak{g} \rangle}.$$

3

4 E b

Image: A match a ma

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , so

$$U(\mathfrak{g}) = \frac{T(\mathfrak{g})}{\langle x \otimes y - y \otimes x - [x, y] \, | \, x, y \in \mathfrak{g} \rangle}.$$

We look at the restricted enveloping algebra

$$U_0(\mathfrak{g}) = \frac{U(\mathfrak{g})}{\langle \delta^{p} - \delta^{[p]} \, | \, \delta \in \mathfrak{g} \rangle}$$

where δ^{p} is the *p*-th power in $U(\mathfrak{g})$.

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , so

$$U(\mathfrak{g}) = \frac{T(\mathfrak{g})}{\langle x \otimes y - y \otimes x - [x, y] \, | \, x, y \in \mathfrak{g} \rangle}.$$

We look at the restricted enveloping algebra

$$U_{0}(\mathfrak{g}) = \frac{U(\mathfrak{g})}{\langle \delta^{p} - \delta^{[p]} | \delta \in \mathfrak{g} \rangle}$$

where δ^{p} is the *p*-th power in $U(\mathfrak{g})$.

Each g-module obtained from a G-module is a $U_0(g)$ -module. But not all g-modules are obtained in this way.

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g} , so

$$U(\mathfrak{g}) = \frac{T(\mathfrak{g})}{\langle x \otimes y - y \otimes x - [x, y] \, | \, x, y \in \mathfrak{g} \rangle}.$$

We look at the restricted enveloping algebra

$$U_{0}(\mathfrak{g}) = \frac{U(\mathfrak{g})}{\langle \delta^{p} - \delta^{[p]} | \delta \in \mathfrak{g} \rangle}$$

where δ^{p} is the *p*-th power in $U(\mathfrak{g})$.

Each g-module obtained from a G-module is a $U_0(g)$ -module. But not all g-modules are obtained in this way.

Given $\chi \in \mathfrak{g}^*$, we define the **reduced enveloping algebra**

$$U_{\chi}(\mathfrak{g}) = \frac{U(\mathfrak{g})}{\langle \delta^{p} - \delta^{[p]} - \chi(\delta)^{p} \, | \, \delta \in \mathfrak{g} \rangle}.$$

Proposition

• The map $\xi : \mathfrak{g} \to U(\mathfrak{g})$ which sends $\delta \mapsto \delta^p - \delta^{[p]}$ is semilinear and has central image.

3

< □ > < 同 > < 回 > < 回 > < 回 >

Proposition

- The map $\xi : \mathfrak{g} \to U(\mathfrak{g})$ which sends $\delta \mapsto \delta^p \delta^{[p]}$ is semilinear and has central image.
- **2** Every irreducible g-module is finite-dimensional.

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition

- The map $\xi : \mathfrak{g} \to U(\mathfrak{g})$ which sends $\delta \mapsto \delta^p \delta^{[p]}$ is semilinear and has central image.
- **2** Every irreducible g-module is finite-dimensional.
- Severy irreducible g-module is an irreducible U_χ(g)-module for some χ ∈ g*.

▲ 同 ▶ → 三 ▶

Proposition

- The map $\xi : \mathfrak{g} \to U(\mathfrak{g})$ which sends $\delta \mapsto \delta^p \delta^{[p]}$ is semilinear and has central image.
- **2** Every irreducible g-module is finite-dimensional.
- Severy irreducible g-module is an irreducible U_χ(g)-module for some χ ∈ g*.
- Given $g \in G$ and $\chi \in \mathfrak{g}^*$, the algebras $U_{\chi}(\mathfrak{g})$ and $U_{g \cdot \chi}(\mathfrak{g})$ are isomorphic.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Proposition

- The map $\xi : \mathfrak{g} \to U(\mathfrak{g})$ which sends $\delta \mapsto \delta^p \delta^{[p]}$ is semilinear and has central image.
- **2** Every irreducible g-module is finite-dimensional.
- Severy irreducible g-module is an irreducible U_χ(g)-module for some χ ∈ g*.
- Given $g \in G$ and $\chi \in \mathfrak{g}^*$, the algebras $U_{\chi}(\mathfrak{g})$ and $U_{g \cdot \chi}(\mathfrak{g})$ are isomorphic.
- Solution Each algebra $U_{\chi}(\mathfrak{g})$ is finite-dimensional, of dimension $p^{\dim \mathfrak{g}}$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

For $\alpha \in \Phi$, we write e_{α} for a chosen root vector in \mathfrak{g}_{α} . Write \mathfrak{n}^- for the Lie subalgebra generated by $e_{-\alpha}$ for $\alpha \in \Phi^+$, and \mathfrak{n}^+ for the Lie subalgebra generated by e_{α} for $\alpha \in \Phi^+$.

For $\alpha \in \Phi$, we write e_{α} for a chosen root vector in \mathfrak{g}_{α} . Write \mathfrak{n}^- for the Lie subalgebra generated by $e_{-\alpha}$ for $\alpha \in \Phi^+$, and \mathfrak{n}^+ for the Lie subalgebra generated by e_{α} for $\alpha \in \Phi^+$.

We then have $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$.

For $\alpha \in \Phi$, we write e_{α} for a chosen root vector in \mathfrak{g}_{α} . Write \mathfrak{n}^- for the Lie subalgebra generated by $e_{-\alpha}$ for $\alpha \in \Phi^+$, and \mathfrak{n}^+ for the Lie subalgebra generated by e_{α} for $\alpha \in \Phi^+$.

We then have $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$.

Note that $e_{\alpha}^{[p]} = 0$ for all $\alpha \in \Phi$, while \mathfrak{h} has a basis h_1, \ldots, h_d with $h_i^{[p]} = h_i$ for all $1 \leq i \leq d$.

For $\alpha \in \Phi$, we write e_{α} for a chosen root vector in \mathfrak{g}_{α} . Write \mathfrak{n}^- for the Lie subalgebra generated by $e_{-\alpha}$ for $\alpha \in \Phi^+$, and \mathfrak{n}^+ for the Lie subalgebra generated by e_{α} for $\alpha \in \Phi^+$.

We then have $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}^+$.

Note that $e_{\alpha}^{[p]} = 0$ for all $\alpha \in \Phi$, while \mathfrak{h} has a basis h_1, \ldots, h_d with $h_i^{[p]} = h_i$ for all $1 \leq i \leq d$.

We will only consider $\chi \in \mathfrak{g}^*$ with $\chi(\mathfrak{n}^+) = 0$.

Baby Verma Modules

Let $\lambda \in \Lambda_{\chi}$, where

$$\Lambda_{\chi} = \{\lambda \in \mathfrak{h}^* \, | \, \lambda(h)^p - \lambda(h^{[p]}) = \chi(h)^p \text{ for all } h \in \mathfrak{h} \}.$$

We define \mathbb{K}_{λ} to be the 1-dimensional $U_{\chi}(\mathfrak{b})$ -module on which \mathfrak{n}^+ acts trivially and \mathfrak{h} acts via λ .

< A > < E

Baby Verma Modules

Let $\lambda \in \Lambda_{\chi}$, where

$$\Lambda_{\chi} = \{\lambda \in \mathfrak{h}^* \, | \, \lambda(h)^p - \lambda(h^{[p]}) = \chi(h)^p \text{ for all } h \in \mathfrak{h} \}.$$

We define \mathbb{K}_{λ} to be the 1-dimensional $U_{\chi}(\mathfrak{b})$ -module on which \mathfrak{n}^+ acts trivially and \mathfrak{h} acts via λ .

We then define the baby Verma module

 $Z_{\chi}(\lambda) := U_{\chi}(\mathfrak{g}) \otimes_{U_{\chi}(\mathfrak{b})} \mathbb{K}_{\lambda}.$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Baby Verma Modules

Let $\lambda \in \Lambda_{\chi}$, where

$$\Lambda_{\chi} = \{\lambda \in \mathfrak{h}^* \, | \, \lambda(h)^p - \lambda(h^{[p]}) = \chi(h)^p \text{ for all } h \in \mathfrak{h} \}.$$

We define \mathbb{K}_{λ} to be the 1-dimensional $U_{\chi}(\mathfrak{b})$ -module on which \mathfrak{n}^+ acts trivially and \mathfrak{h} acts via λ .

We then define the baby Verma module

$$Z_{\chi}(\lambda) := U_{\chi}(\mathfrak{g}) \otimes_{U_{\chi}(\mathfrak{b})} \mathbb{K}_{\lambda}.$$

Proposition

Every irreducible $U_{\chi}(\mathfrak{g})$ -module is a quotient of some baby Verma module.

- 4 回 ト - 4 三 ト

When $G = SL_2$, and so $\mathfrak{g} = \mathfrak{sl}_2$, we classify the irreducible \mathfrak{g} -modules when p > 2.

3

< □ > < 同 > < 回 > < 回 > < 回 >

When $G = SL_2$, and so $\mathfrak{g} = \mathfrak{sl}_2$, we classify the irreducible \mathfrak{g} -modules when p > 2.

Recall that \mathfrak{sl}_2 has \mathbb{K} -basis e, h, f where

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

When $G = SL_2$, and so $\mathfrak{g} = \mathfrak{sl}_2$, we classify the irreducible \mathfrak{g} -modules when p > 2.

Recall that \mathfrak{sl}_2 has \mathbb{K} -basis e, h, f where

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Each $\chi \in \mathfrak{g}^*$ is conjugate to a linear form of one of the three following types:

1
$$\chi = 0$$

イロト 不得下 イヨト イヨト 二日

When $G = SL_2$, and so $\mathfrak{g} = \mathfrak{sl}_2$, we classify the irreducible \mathfrak{g} -modules when p > 2.

Recall that \mathfrak{sl}_2 has \mathbb{K} -basis e, h, f where

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Each $\chi \in \mathfrak{g}^*$ is conjugate to a linear form of one of the three following types:

1 χ = 0.
2 e → 0, f → 0, h → t for some t ∈ K*. We call such χ semisimple.

イロト イポト イヨト イヨト 二日

${\rm SL}_2$

When $G = SL_2$, and so $\mathfrak{g} = \mathfrak{sl}_2$, we classify the irreducible \mathfrak{g} -modules when p > 2.

Recall that \mathfrak{sl}_2 has \mathbb{K} -basis e, h, f where

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Each $\chi \in \mathfrak{g}^*$ is conjugate to a linear form of one of the three following types:

- **1** $\chi = 0.$
- **2** $e \mapsto 0, f \mapsto 0, h \mapsto t$ for some $t \in \mathbb{K}^*$. We call such χ **semisimple**.
- **(**) $e \mapsto 0, f \mapsto 1, h \mapsto 0$. We call such χ **nilpotent**.

When $G = SL_2$, and so $\mathfrak{g} = \mathfrak{sl}_2$, we classify the irreducible \mathfrak{g} -modules when p > 2.

Recall that \mathfrak{sl}_2 has \mathbb{K} -basis e, h, f where

$$e = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad f = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Each $\chi \in \mathfrak{g}^*$ is conjugate to a linear form of one of the three following types:

- **1** $\chi = 0.$
- **2** $e \mapsto 0, f \mapsto 0, h \mapsto t$ for some $t \in \mathbb{K}^*$. We call such χ semisimple.
- **3** $e \mapsto 0, f \mapsto 1, h \mapsto 0$. We call such χ **nilpotent**.

We may identify \mathfrak{h}^* with \mathbb{K} . When $\chi = 0$ or χ is nilpotent, we have $\Lambda_{\chi} = \mathbb{F}_p$. When χ is semisimple we have $\Lambda_{\chi} \subseteq \mathbb{K} \setminus \mathbb{F}_p$.

Theorem (Block '62, Rudakov-Shafarevich '67)

Suppose χ = 0. Then there exists exactly one irreducible U_χ(g)-module of each dimension 1,..., p, and each irreducible U_χ(g) appears in this way.

Theorem (Block '62, Rudakov-Shafarevich '67)

- Suppose χ = 0. Then there exists exactly one irreducible U_χ(g)-module of each dimension 1,..., p, and each irreducible U_χ(g) appears in this way.
- Suppose χ is non-zero semisimple. Then each baby Verma module Z_χ(λ), for λ ∈ Λ_χ, is irreducible. Each irreducible module appears in this way. Furthermore, Z_χ(λ) ≅ Z_χ(μ) if and only if λ = μ. So there are exactly p non-isomorphic irreducible U_χ(g)-modules.

< □ > < 同 > < 三 > < 三 >

Theorem (Block '62, Rudakov-Shafarevich '67)

- Suppose χ = 0. Then there exists exactly one irreducible U_χ(g)-module of each dimension 1,..., p, and each irreducible U_χ(g) appears in this way.
- Suppose χ is non-zero semisimple. Then each baby Verma module Z_χ(λ), for λ ∈ Λ_χ, is irreducible. Each irreducible module appears in this way. Furthermore, Z_χ(λ) ≅ Z_χ(μ) if and only if λ = μ. So there are exactly p non-isomorphic irreducible U_χ(g)-modules.
- Suppose χ is non-zero nilpotent. Then each baby Verma module Z_χ(λ), for λ ∈ Λ_χ, is irreducible. Each irreducible module appears in this way. Furthermore, Z_χ(λ) ≅ Z_χ(μ) if and only if λ = μ or λ = p μ 2. So there are exactly ^{p+1}/₂ non-isomorphic irreducible U_χ(g)-modules.

< □ > < □ > < □ > < □ > < □ > < □ >

Coordinate Algebra

Recall that $\mathbb{K}[G]$ is the coordinate algebra of G. This is a Hopf algebra, with comultiplication, counit and antipode:

$$\begin{split} \Delta : \mathbb{K}[G] \to \mathbb{K}[G] \otimes \mathbb{K}[G] &= \mathbb{K}[G \times G], \quad \phi \mapsto ((g_1, g_2) \mapsto \phi(g_1 g_2)), \\ \varepsilon : \mathbb{K}[G] \to \mathbb{K}, \qquad \phi \mapsto \phi(1_G), \\ S : \mathbb{K}[G] \to \mathbb{K}[G], \qquad \phi \mapsto (g \mapsto \phi(g^{-1})). \end{split}$$

< A >

Coordinate Algebra

Recall that $\mathbb{K}[G]$ is the coordinate algebra of G. This is a Hopf algebra, with comultiplication, counit and antipode:

$$\begin{split} \Delta : \mathbb{K}[G] \to \mathbb{K}[G] \otimes \mathbb{K}[G] &= \mathbb{K}[G \times G], \quad \phi \mapsto ((g_1, g_2) \mapsto \phi(g_1 g_2)), \\ \varepsilon : \mathbb{K}[G] \to \mathbb{K}, \qquad \phi \mapsto \phi(1_G), \\ S : \mathbb{K}[G] \to \mathbb{K}[G], \qquad \phi \mapsto (g \mapsto \phi(g^{-1})). \end{split}$$

We let I be the augmentation ideal of $\mathbb{K}[G]$, i.e.

$$I = \ker(\varepsilon).$$

The distribution algebra Dist(G) of G is a filtered Hopf algebra

$$\operatorname{Dist}(G) = \bigcup_{n \ge 0} \operatorname{Dist}_n(G)$$

where $Dist_n(G)$ is a \mathbb{K} -vector space (in fact coalgebra) defined as

 $\mathrm{Dist}_n(G) := \{ \delta : \mathbb{K}[G] \to \mathbb{K} \, | \, \delta \text{ is linear and } \delta(I^{n+1}) = 0 \}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The distribution algebra Dist(G) of G is a filtered Hopf algebra

$$\operatorname{Dist}(G) = \bigcup_{n \ge 0} \operatorname{Dist}_n(G)$$

where $Dist_n(G)$ is a \mathbb{K} -vector space (in fact coalgebra) defined as

 $\operatorname{Dist}_n(G) := \{\delta : \mathbb{K}[G] \to \mathbb{K} \mid \delta \text{ is linear and } \delta(I^{n+1}) = 0\}.$

Given $\delta, \mu \in \text{Dist}(G)$, we have the product $\delta \mu$ defined as the composition

$$\mathbb{K}[G] \xrightarrow{\Delta} \mathbb{K}[G] \otimes \mathbb{K}[G] \xrightarrow{\delta \otimes \mu} \mathbb{K} \otimes \mathbb{K} \xrightarrow{\sim} \mathbb{K}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The distribution algebra Dist(G) of G is a filtered Hopf algebra

$$\operatorname{Dist}(G) = \bigcup_{n \ge 0} \operatorname{Dist}_n(G)$$

where $Dist_n(G)$ is a \mathbb{K} -vector space (in fact coalgebra) defined as

 $\operatorname{Dist}_n(G) := \{ \delta : \mathbb{K}[G] \to \mathbb{K} \, | \, \delta \text{ is linear and } \delta(I^{n+1}) = 0 \}.$

Given $\delta, \mu \in \text{Dist}(G)$, we have the product $\delta \mu$ defined as the composition

$$\mathbb{K}[G] \xrightarrow{\Delta} \mathbb{K}[G] \otimes \mathbb{K}[G] \xrightarrow{\delta \otimes \mu} \mathbb{K} \otimes \mathbb{K} \xrightarrow{\sim} \mathbb{K}.$$

The unit of Dist(G) is the counit ε of $\mathbb{K}[G]$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We furthermore define

$$\operatorname{Dist}_{n}^{+}(G) := \{ \delta \in \operatorname{Dist}_{n}(G) \mid \delta(1_{\mathbb{K}[G]}) = 0 \}$$

and

$$\operatorname{Dist}^+(G) = \bigcup_{n \ge 0} \operatorname{Dist}^+_n(G).$$

э

イロト イヨト イヨト イヨト

We furthermore define

$$\operatorname{Dist}_{n}^{+}(G) := \{ \delta \in \operatorname{Dist}_{n}(G) \, | \, \delta(1_{\mathbb{K}[G]}) = 0 \}$$

and

$$\operatorname{Dist}^+(G) = \bigcup_{n \ge 0} \operatorname{Dist}^+_n(G).$$

Proposition

Let $\delta \in \text{Dist}_n(G)$, $\mu \in \text{Dist}_m(G)$. Then

э

イロト イヨト イヨト イヨト

We furthermore define

$$\operatorname{Dist}_{n}^{+}(G) := \{ \delta \in \operatorname{Dist}_{n}(G) \, | \, \delta(1_{\mathbb{K}[G]}) = 0 \}$$

and

$$\operatorname{Dist}^+(G) = \bigcup_{n \ge 0} \operatorname{Dist}^+_n(G).$$

Proposition

Let $\delta \in \text{Dist}_n(G)$, $\mu \in \text{Dist}_m(G)$. Then

• The product $\delta \mu$ lies in $\operatorname{Dist}_{n+m}(G)$.

э

A D N A B N A B N A B N

We furthermore define

$$\operatorname{Dist}_{n}^{+}(G) := \{ \delta \in \operatorname{Dist}_{n}(G) \mid \delta(1_{\mathbb{K}[G]}) = 0 \}$$

and

$$\operatorname{Dist}^+(G) = \bigcup_{n \ge 0} \operatorname{Dist}^+_n(G).$$

Proposition

Let $\delta \in \text{Dist}_n(G)$, $\mu \in \text{Dist}_m(G)$. Then

- The product $\delta \mu$ lies in $\operatorname{Dist}_{n+m}(G)$.
- 2 The commutator $[\delta, \mu] = \delta \mu \mu \delta$ lies in $\text{Dist}_{n+m-1}(G)$.

э

イロト イヨト イヨト イヨト

We furthermore define

$$\operatorname{Dist}_{n}^{+}(G) := \{ \delta \in \operatorname{Dist}_{n}(G) \mid \delta(1_{\mathbb{K}[G]}) = 0 \}$$

and

$$\operatorname{Dist}^+(G) = \bigcup_{n \ge 0} \operatorname{Dist}^+_n(G).$$

Proposition

Let $\delta \in \text{Dist}_n(G)$, $\mu \in \text{Dist}_m(G)$. Then

- The product $\delta \mu$ lies in $\operatorname{Dist}_{n+m}(G)$.
- **2** The commutator $[\delta, \mu] = \delta \mu \mu \delta$ lies in $\text{Dist}_{n+m-1}(G)$.
- If, furthermore, $\delta \in \text{Dist}_n^+(G)$ and $\mu \in \text{Dist}_m^+(G)$ then $\delta \mu \in \text{Dist}_{n+m}^+(G)$ and $[\delta, \mu] \in \text{Dist}_{m+n-1}^+(G)$.

3

イロト イヨト イヨト イヨト

We furthermore define

$$\operatorname{Dist}_{n}^{+}(G) := \{ \delta \in \operatorname{Dist}_{n}(G) \mid \delta(1_{\mathbb{K}[G]}) = 0 \}$$

and

$$\operatorname{Dist}^+(G) = \bigcup_{n \ge 0} \operatorname{Dist}^+_n(G).$$

Proposition

Let $\delta \in \text{Dist}_n(G)$, $\mu \in \text{Dist}_m(G)$. Then

- The product $\delta \mu$ lies in $\operatorname{Dist}_{n+m}(G)$.
- 2 The commutator $[\delta, \mu] = \delta \mu \mu \delta$ lies in $\operatorname{Dist}_{n+m-1}(G)$.
- If, furthermore, $\delta \in \text{Dist}_n^+(G)$ and $\mu \in \text{Dist}_m^+(G)$ then $\delta \mu \in \text{Dist}_{n+m}^+(G)$ and $[\delta, \mu] \in \text{Dist}_{m+n-1}^+(G)$.

In particular, $\text{Dist}_1^+(G) = \mathfrak{g}$.

3

A D N A B N A B N A B N

The Frobenius morphism

$$F: G \to G^{(1)}$$

is obtained from the comorphism

$$F^* : \mathbb{K}[G]^{(-1)} \to \mathbb{K}[G], \qquad f \mapsto f^p.$$

(日) (四) (日) (日) (日)

э

The Frobenius morphism

$$F: G \to G^{(1)}$$

is obtained from the comorphism

$$F^* : \mathbb{K}[G]^{(-1)} \to \mathbb{K}[G], \qquad f \mapsto f^p.$$

The **first Frobenius kernel** G_1 of G is then defined as the kernel of this map.

- 4 🗗 ▶

The Frobenius morphism

$$F: G \to G^{(1)}$$

is obtained from the comorphism

$$F^* : \mathbb{K}[G]^{(-1)} \to \mathbb{K}[G], \qquad f \mapsto f^p.$$

The **first Frobenius kernel** G_1 of G is then defined as the kernel of this map.

We may define $Dist(G_1)$ in the same way we defined Dist(G).

The Frobenius morphism

$$F: G \to G^{(1)}$$

is obtained from the comorphism

$$F^* : \mathbb{K}[G]^{(-1)} \to \mathbb{K}[G], \qquad f \mapsto f^p.$$

The **first Frobenius kernel** G_1 of G is then defined as the kernel of this map.

We may define $\operatorname{Dist}(G_1)$ in the same way we defined $\operatorname{Dist}(G)$. There exists a Lie algebra homomorphism $\mathfrak{g} \to \operatorname{Dist}(G)^{(-)}$, which extends to an algebra homomorphism

$$U(\mathfrak{g}) \to \operatorname{Dist}(G).$$

The Frobenius morphism

$$F: G \to G^{(1)}$$

is obtained from the comorphism

$$F^* : \mathbb{K}[G]^{(-1)} \to \mathbb{K}[G], \qquad f \mapsto f^p.$$

The **first Frobenius kernel** G_1 of G is then defined as the kernel of this map.

We may define $\operatorname{Dist}(G_1)$ in the same way we defined $\operatorname{Dist}(G)$. There exists a Lie algebra homomorphism $\mathfrak{g} \to \operatorname{Dist}(G)^{(-)}$, which extends to an algebra homomorphism

$$U(\mathfrak{g}) \to \operatorname{Dist}(G).$$

When the characteristic of \mathbb{K} is zero, this is an isomorphism.

The Frobenius morphism

$$F: G \to G^{(1)}$$

is obtained from the comorphism

$$F^* : \mathbb{K}[G]^{(-1)} \to \mathbb{K}[G], \qquad f \mapsto f^p.$$

The **first Frobenius kernel** G_1 of G is then defined as the kernel of this map.

We may define $\operatorname{Dist}(G_1)$ in the same way we defined $\operatorname{Dist}(G)$. There exists a Lie algebra homomorphism $\mathfrak{g} \to \operatorname{Dist}(G)^{(-)}$, which extends to an algebra homomorphism

$$U(\mathfrak{g}) \to \operatorname{Dist}(G).$$

When the characteristic of \mathbb{K} is zero, this is an isomorphism.

But, when the characteristic of \mathbb{K} is p > 0, it is generally neither injective or surjective.

Theorem

In characteristic p > 0, the algebra homomorphism passes to an algebra isomorphism

 $U_0(\mathfrak{g}) \xrightarrow{\sim} \operatorname{Dist}(G_1).$

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem

In characteristic p > 0, the algebra homomorphism passes to an algebra isomorphism

 $U_0(\mathfrak{g}) \xrightarrow{\sim} \operatorname{Dist}(G_1).$

By iterating the Frobenius map, we may instead take the kernel of

 $F^r: G \to G^{(r)}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

In characteristic p > 0, the algebra homomorphism passes to an algebra isomorphism

 $U_0(\mathfrak{g}) \xrightarrow{\sim} \operatorname{Dist}(G_1).$

By iterating the Frobenius map, we may instead take the kernel of

$$F^r: G \to G^{(r)}.$$

We call it a higher Frobenius kernel of G and denote it by G_r .

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem

In characteristic p > 0, the algebra homomorphism passes to an algebra isomorphism

 $U_0(\mathfrak{g}) \xrightarrow{\sim} \operatorname{Dist}(G_1).$

By iterating the Frobenius map, we may instead take the kernel of

$$F^r: G \to G^{(r)}.$$

We call it a higher Frobenius kernel of G and denote it by G_r .

Question (Friedlander-Parshall, 1990)

Do the reduced enveloping algebras $U_{\chi}(\mathfrak{g})$ have natural analogues corresponding to the infinitesimal group schemes G_r associated to G for r > 1?

イロト 不得 トイヨト イヨト 二日

We define the higher universal enveloping algebra of degree $r \in \mathbb{N}$ as

$$U^{[r]}(G) \coloneqq \frac{T(\mathrm{Dist}^+_{p^{r+1}-1}(G))}{Q}$$

where Q is the two-sided ideal generated by the relations:

We define the higher universal enveloping algebra of degree $r \in \mathbb{N}$ as

$$U^{[r]}(G) := \frac{T(\mathrm{Dist}^+_{p^{r+1}-1}(G))}{Q}$$

where Q is the two-sided ideal generated by the relations:

•
$$\delta \otimes \mu - \delta \mu$$
 for $\delta \in \text{Dist}_i^+(\mathcal{G})$, $\mu \in \text{Dist}_j^+(\mathcal{G})$ with $i + j < p^{r+1}$, and

We define the higher universal enveloping algebra of degree $r \in \mathbb{N}$ as

$$U^{[r]}(G) := \frac{T(\mathrm{Dist}_{p^{r+1}-1}^+(G))}{Q}$$

where Q is the two-sided ideal generated by the relations:

- $\delta \otimes \mu \delta \mu$ for $\delta \in \text{Dist}_i^+(G)$, $\mu \in \text{Dist}_j^+(G)$ with $i + j < p^{r+1}$, and
- $\delta \otimes \mu \mu \otimes \delta [\delta, \mu]$ for $\delta \in \text{Dist}_i^+(G)$, $\mu \in \text{Dist}_j^+(G)$ with $i + j \leq p^{r+1}$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

We define the **higher universal enveloping algebra** of degree $r \in \mathbb{N}$ as

$$U^{[r]}(G) := \frac{T(\mathrm{Dist}_{p^{r+1}-1}^+(G))}{Q}$$

where Q is the two-sided ideal generated by the relations:

•
$$\delta \otimes \mu - \delta \mu$$
 for $\delta \in \text{Dist}_i^+(G)$, $\mu \in \text{Dist}_j^+(G)$ with $i + j < p^{r+1}$, and

•
$$\delta \otimes \mu - \mu \otimes \delta - [\delta, \mu]$$
 for $\delta \in \text{Dist}_i^+(G)$, $\mu \in \text{Dist}_j^+(G)$ with $i + j \leq p^{r+1}$.

Here, $\delta\mu$ and $[\delta,\mu]$ are the product and commutator in Dist(G), which lie in $\text{Dist}^+_{p'+1-1}(G)$ because of the assumptions

(人間) トイヨト イヨト ニヨ

Theorem (W. '18,'19)

• For each $r \in \mathbb{N}$, $U^{[r]}(G)$ is a cocommutative Hopf algebra.

イロト イポト イヨト イヨト

Theorem (W. '18,'19)

- For each $r \in \mathbb{N}$, $U^{[r]}(G)$ is a cocommutative Hopf algebra.
- For each $r \ge s$, there exists a Hopf algebra homomorphism $U^{[r]}(G) \twoheadrightarrow U^{[s]}(G)$.

3

▲ 伊 ▶ ▲ 三

Theorem (W. '18,'19)

- For each $r \in \mathbb{N}$, $U^{[r]}(G)$ is a cocommutative Hopf algebra.
- For each $r \ge s$, there exists a Hopf algebra homomorphism $U^{[r]}(G) \twoheadrightarrow U^{[s]}(G)$.
- When r = 0 we get $U^{[0]}(G) \cong U(\mathfrak{g})$.

< /□ > < ∃

Theorem (W. '18,'19)

- For each $r \in \mathbb{N}$, $U^{[r]}(G)$ is a cocommutative Hopf algebra.
- For each $r \ge s$, there exists a Hopf algebra homomorphism $U^{[r]}(G) \twoheadrightarrow U^{[s]}(G)$.
- When r = 0 we get $U^{[0]}(G) \cong U(\mathfrak{g})$.
- Each of the algebra $U^{[r]}(G)$ has a Poincaré-Birkhoff-Witt basis, using regular and divided powers.

Theorem (W. '18,'19)

- For each $r \in \mathbb{N}$, $U^{[r]}(G)$ is a cocommutative Hopf algebra.
- For each $r \ge s$, there exists a Hopf algebra homomorphism $U^{[r]}(G) \twoheadrightarrow U^{[s]}(G)$.
- When r = 0 we get $U^{[0]}(G) \cong U(\mathfrak{g})$.
- Each of the algebra $U^{[r]}(G)$ has a Poincaré-Birkhoff-Witt basis, using regular and divided powers.
- For each $\delta \in \text{Dist}_{p^r}^+(G)$, the element $\delta^{\otimes p} \delta^p$ is central, and the map $\delta \mapsto \delta^{\otimes p} \delta^p$ is semilinear.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (W. '18,'19)

- For each $r \in \mathbb{N}$, $U^{[r]}(G)$ is a cocommutative Hopf algebra.
- For each $r \ge s$, there exists a Hopf algebra homomorphism $U^{[r]}(G) \twoheadrightarrow U^{[s]}(G)$.
- When r = 0 we get $U^{[0]}(G) \cong U(\mathfrak{g})$.
- Each of the algebra $U^{[r]}(G)$ has a Poincaré-Birkhoff-Witt basis, using regular and divided powers.
- For each $\delta \in \text{Dist}_{p^r}^+(G)$, the element $\delta^{\otimes p} \delta^p$ is central, and the map $\delta \mapsto \delta^{\otimes p} \delta^p$ is semilinear.
- All irreducible $U^{[r]}(G)$ -modules are finite-dimensional.

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (W. '18,'19)

- For each $r \in \mathbb{N}$, $U^{[r]}(G)$ is a cocommutative Hopf algebra.
- For each $r \ge s$, there exists a Hopf algebra homomorphism $U^{[r]}(G) \twoheadrightarrow U^{[s]}(G)$.
- When r = 0 we get $U^{[0]}(G) \cong U(\mathfrak{g})$.
- Each of the algebra $U^{[r]}(G)$ has a Poincaré-Birkhoff-Witt basis, using regular and divided powers.
- For each $\delta \in \text{Dist}_{p^r}^+(G)$, the element $\delta^{\otimes p} \delta^p$ is central, and the map $\delta \mapsto \delta^{\otimes p} \delta^p$ is semilinear.
- All irreducible $U^{[r]}(G)$ -modules are finite-dimensional.
- The finite-dimensional Hopf algebra $Dist(G_r)$ embeds inside $U^{[r]}(G)$ as a normal Hopf subalgebra.

< □ > < □ > < □ > < □ > < □ > < □ >

The algebra homomorphisms

$$U^{[r]}(G) \twoheadrightarrow U(\mathfrak{g})$$

restrict to

$$\operatorname{Dist}_{p^r}^+(G) \twoheadrightarrow \mathfrak{g}.$$

(日) (四) (日) (日) (日)

э

The algebra homomorphisms

$$U^{[r]}(G) \twoheadrightarrow U(\mathfrak{g})$$

restrict to

$$\operatorname{Dist}^+_{p^r}(G) \twoheadrightarrow \mathfrak{g}.$$

Thus, any linear form $\chi \in \mathfrak{g}^*$ can be lifted to a linear map

 $\chi : \operatorname{Dist}_{p^r}^+(G) \to \mathbb{K}.$

< □ > < □ > < □ > < □ > < □ > < □ >

The algebra homomorphisms

$$U^{[r]}(G) \twoheadrightarrow U(\mathfrak{g})$$

restrict to

$$\operatorname{Dist}_{p^r}^+(G) \twoheadrightarrow \mathfrak{g}.$$

Thus, any linear form $\chi \in \mathfrak{g}^*$ can be lifted to a linear map

$$\chi : \operatorname{Dist}_{p^r}^+(G) \to \mathbb{K}.$$

This allows us to define the **higher reduced enveloping algebra** associated to $\chi \in \mathfrak{g}^*$ as

$$U_{\chi}^{[r]}(G) := \frac{U^{[r]}(G)}{\langle \delta^{\otimes p} - \delta^{p} - \chi(\delta)^{p} \, | \, \delta \in \mathrm{Dist}_{p^{r}}^{+}(G) \rangle}.$$

・ 何 ト ・ ヨ ト ・ ヨ ト

These algebras have a number of nice properties:

э

< 17 ▶

These algebras have a number of nice properties:

• If \mathfrak{g} has dimension n then, for any $\chi \in \mathfrak{g}^*$, the \mathbb{K} -algebra $U_{\chi}^{[r]}(G)$ has dimension $p^{(r+1)n}$.

< /□ > < ∃

- If \mathfrak{g} has dimension n then, for any $\chi \in \mathfrak{g}^*$, the \mathbb{K} -algebra $U_{\chi}^{[r]}(G)$ has dimension $p^{(r+1)n}$.
- When $\chi = 0$, we obtain $U_0^{[r]}(G) = \text{Dist}(G_{r+1})$.

- If \mathfrak{g} has dimension n then, for any $\chi \in \mathfrak{g}^*$, the \mathbb{K} -algebra $U_{\chi}^{[r]}(G)$ has dimension $p^{(r+1)n}$.
- When $\chi = 0$, we obtain $U_0^{[r]}(G) = \text{Dist}(G_{r+1})$.
- $\operatorname{Dist}(G_r)$ lies inside $U_{\chi}^{[r]}(G)$ for all $\chi \in \mathfrak{g}^*$.

- If \mathfrak{g} has dimension n then, for any $\chi \in \mathfrak{g}^*$, the \mathbb{K} -algebra $U_{\chi}^{[r]}(G)$ has dimension $p^{(r+1)n}$.
- When $\chi = 0$, we obtain $U_0^{[r]}(G) = \text{Dist}(G_{r+1})$.
- $\operatorname{Dist}(G_r)$ lies inside $U_{\chi}^{[r]}(G)$ for all $\chi \in \mathfrak{g}^*$.
- Every irreducible U^[r](G)-module is a U^[r]_χ(G)-modules for some χ ∈ g*.

- If \mathfrak{g} has dimension n then, for any $\chi \in \mathfrak{g}^*$, the \mathbb{K} -algebra $U_{\chi}^{[r]}(G)$ has dimension $p^{(r+1)n}$.
- When $\chi = 0$, we obtain $U_0^{[r]}(G) = \text{Dist}(G_{r+1})$.
- $\operatorname{Dist}(G_r)$ lies inside $U_{\chi}^{[r]}(G)$ for all $\chi \in \mathfrak{g}^*$.
- Every irreducible $U^{[r]}(G)$ -module is a $U^{[r]}_{\chi}(G)$ -modules for some $\chi \in \mathfrak{g}^*$.
- Given $g \in G$, $U_{\chi}^{[r]}(G) \cong U_{g \cdot \chi}^{[r]}(G)$, where $g \cdot \chi$ is the twisted coadjoint action.

Representation Theoretic Results

When G is a semisimple simply-connected algebraic group, we can obtain a Steinberg decomposition.

< /□ > < ∃

Representation Theoretic Results

When G is a semisimple simply-connected algebraic group, we can obtain a Steinberg decomposition.

Theorem (W. '19)

There is a bijection

 $\Psi: \operatorname{Irr}(U^{[r]}(G)) \to \operatorname{Irr}(\operatorname{Dist}(G_r)) \times \operatorname{Irr}(U(\mathfrak{g}))$

which sends M to $(P, \operatorname{Hom}_{G_r}(P, M))$, where P is the unique irreducible $\operatorname{Dist}(G_r)$ -submodule of M. Furthermore, the reverse map sends (P, N) to the $U^{[r]}(G)$ -module $(U^{[r]}(G) \otimes_{\operatorname{Dist}(G_r)} P) \otimes_{U(\mathfrak{g})} N = P \otimes_{\mathbb{K}} N$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representation Theoretic Results

When G is a semisimple simply-connected algebraic group, we can obtain a Steinberg decomposition.

Theorem (W. '19)

There is a bijection

 $\Psi: \operatorname{Irr}(U^{[r]}(G)) \to \operatorname{Irr}(\operatorname{Dist}(G_r)) \times \operatorname{Irr}(U(\mathfrak{g}))$

which sends M to $(P, \operatorname{Hom}_{G_r}(P, M))$, where P is the unique irreducible $\operatorname{Dist}(G_r)$ -submodule of M. Furthermore, the reverse map sends (P, N) to the $U^{[r]}(G)$ -module $(U^{[r]}(G) \otimes_{\operatorname{Dist}(G_r)} P) \otimes_{U(\mathfrak{g})} N = P \otimes_{\mathbb{K}} N$.

Theorem (W. '19) Let $\chi \in \mathfrak{g}^*$. The above map restricts to a bijection $\Psi_{\chi} : \operatorname{Irr}(U_{\chi}^{[r]}(G)) \to \operatorname{Irr}(\operatorname{Dist}(G_r)) \times \operatorname{Irr}(U_{\chi}(\mathfrak{g})).$

3

・ロト ・四ト ・ヨト ・ヨト

Given $P \in \operatorname{Irr}(\operatorname{Dist}(G_r))$, $\chi \in \mathfrak{g}^*$ with $\chi(\mathfrak{n}^+) = 0$, and

$$\lambda \in \Lambda_{\chi} := \{ \lambda \in \mathfrak{h}^* \, | \, \lambda(h)^p - \lambda(h^{\lfloor p \rfloor}) = \chi(h)^p \text{ for all } h \in \mathfrak{h} \}$$

we define the teenage Verma module

$$Z_{\chi}^{[r]}(P,\lambda) := (U_{\chi}^{[r]}(G) \otimes_{\operatorname{Dist}(G_r)} P) \otimes_{U_{\chi}(\mathfrak{g})} Z_{\chi}(\lambda) \cong P \otimes_{\mathbb{K}} Z_{\chi}(\lambda).$$

イロト 不得 トイヨト イヨト 二日

Given $P \in Irr(Dist(G_r))$, $\chi \in \mathfrak{g}^*$ with $\chi(\mathfrak{n}^+) = 0$, and

$$\lambda \in \Lambda_{\chi} := \{ \lambda \in \mathfrak{h}^* \, | \, \lambda(h)^p - \lambda(h^{[p]}) = \chi(h)^p \text{ for all } h \in \mathfrak{h} \}$$

we define the teenage Verma module

$$Z_{\chi}^{[r]}(P,\lambda) := (U_{\chi}^{[r]}(G) \otimes_{\operatorname{Dist}(G_r)} P) \otimes_{U_{\chi}(\mathfrak{g})} Z_{\chi}(\lambda) \cong P \otimes_{\mathbb{K}} Z_{\chi}(\lambda).$$

Under certain assumptions, we obtain the following properties.

イロト 不得 トイヨト イヨト 二日

Given $P \in \operatorname{Irr}(\operatorname{Dist}(G_r))$, $\chi \in \mathfrak{g}^*$ with $\chi(\mathfrak{n}^+) = 0$, and

$$\lambda \in \Lambda_{\chi} := \{ \lambda \in \mathfrak{h}^* \, | \, \lambda(h)^p - \lambda(h^{[p]}) = \chi(h)^p \text{ for all } h \in \mathfrak{h} \}$$

we define the teenage Verma module

$$Z_{\chi}^{[r]}(P,\lambda) := (U_{\chi}^{[r]}(G) \otimes_{\operatorname{Dist}(G_r)} P) \otimes_{U_{\chi}(\mathfrak{g})} Z_{\chi}(\lambda) \cong P \otimes_{\mathbb{K}} Z_{\chi}(\lambda).$$

Under certain assumptions, we obtain the following properties.

Every irreducible U^[r]_χ(G)-module is a homomorphic image of a teenage Verma module.

Given $P \in \operatorname{Irr}(\operatorname{Dist}(G_r))$, $\chi \in \mathfrak{g}^*$ with $\chi(\mathfrak{n}^+) = 0$, and

$$\lambda \in \Lambda_{\chi} := \{ \lambda \in \mathfrak{h}^* \, | \, \lambda(h)^p - \lambda(h^{\lfloor p \rfloor}) = \chi(h)^p \text{ for all } h \in \mathfrak{h} \}$$

we define the teenage Verma module

$$Z_{\chi}^{[r]}(P,\lambda) := (U_{\chi}^{[r]}(G) \otimes_{\operatorname{Dist}(G_r)} P) \otimes_{U_{\chi}(\mathfrak{g})} Z_{\chi}(\lambda) \cong P \otimes_{\mathbb{K}} Z_{\chi}(\lambda).$$

Under certain assumptions, we obtain the following properties.

- Every irreducible U^[r]_χ(G)-module is a homomorphic image of a teenage Verma module.
- If χ is regular (i.e. dim $(C_G(\chi)) = \dim(\mathfrak{h})$), then each $Z_{\chi}^{[r]}(P, \lambda)$ is an irreducible $U^{[r]}(G)$ -module.

Given $P \in \operatorname{Irr}(\operatorname{Dist}(G_r))$, $\chi \in \mathfrak{g}^*$ with $\chi(\mathfrak{n}^+) = 0$, and

$$\lambda \in \Lambda_{\chi} := \{ \lambda \in \mathfrak{h}^* \, | \, \lambda(h)^p - \lambda(h^{[p]}) = \chi(h)^p \text{ for all } h \in \mathfrak{h} \}$$

we define the teenage Verma module

$$Z_{\chi}^{[r]}(P,\lambda) := (U_{\chi}^{[r]}(G) \otimes_{\operatorname{Dist}(G_r)} P) \otimes_{U_{\chi}(\mathfrak{g})} Z_{\chi}(\lambda) \cong P \otimes_{\mathbb{K}} Z_{\chi}(\lambda).$$

Under certain assumptions, we obtain the following properties.

- Every irreducible U^[r]_χ(G)-module is a homomorphic image of a teenage Verma module.
- If χ is regular (i.e. dim $(C_G(\chi)) = \dim(\mathfrak{h})$), then each $Z_{\chi}^{[r]}(P, \lambda)$ is an irreducible $U^{[r]}(G)$ -module.

• Each teenage Verma module $Z_{\chi}^{[r]}(P,\lambda)$ has dimension $p^{\dim(n^{-})}\dim(P)$, so the maximal dimension of an irreducible $U^{[r]}(G)$ -module is $p^{(r+1)\dim(n^{-})}$, obtained via the Steinberg module.

Thank you for listening!

< □ > < 同 > < 回 > < 回 > < 回 >

э